Brain Stimulation (Mar 2021)

Repetitive anodal transcranial direct current stimulation improves neurological recovery by preserving the neuroplasticity in an asphyxial rat model of cardiac arrest

  • Chenxi Dai,
  • Jianjie Wang,
  • Jingru Li,
  • Juan Wang,
  • Lei Zhang,
  • Changlin Yin,
  • Yongqin Li

Journal volume & issue
Vol. 14, no. 2
pp. 407 – 416

Abstract

Read online

Background: Non-shockable rhythms present an increasing proportion of out-of-hospital cardiac arrest (CA) patients, but are associated with poor prognosis and received limited therapeutic effect of targeted temperature management (TTM). Previous study showed repetitive anodal transcranial direct current stimulation (tDCS) improved neurological outcomes in animals with ventricular fibrillation. Here, we examine the effectiveness of tDCS on neurological recovery and the potential mechanisms in a rat model of asphyxial CA. Method: Cardiopulmonary resuscitation was initiated after 5 min of untreated asphyxial CA. Animals were randomized to three experimental groups immediately after successful resuscitation (n = 12/group, 6 males): no-treatment control (NTC) group, TTM group, and tDCS group. Post resuscitation hemodynamics, quantitative electroencephalogram (EEG), neurological deficit score, and 96-h survival were evaluated. Brain tissues of additional animals undergoing same experimental procedure was harvested for enzyme-linked immunoassay-based quantification assays of neuroplasticity-related biomarkers and compared with the sham-operated rats (n = 6/group). Results: We observed that after resuscitation tDCS-treated animals exhibited significantly higher mean arterial pressure and left ventricular ejection fraction than NTC group and showed greatly improved EEG characteristics including weighted-permutation entropy and gamma band power, and neurologic deficit scores and 96-h survival rates compared to NTC and TTM groups. Furthermore, neuroplastic biomarkers including microtubule-associated protein 2, growth-associated protein 43, postsynaptic density protein 95 and synaptophysin, were significantly higher in tDCS group when compared with NTC and TTM groups. Conclusion: In this rat model of asphyxial CA, repetitive anodal tDCS commenced after resuscitation improved neurological recovery, and it may exert a neuroprotective effect by preserving the neuroplasticity.

Keywords