Beilstein Journal of Organic Chemistry (Nov 2010)

Self-assembly and semiconductivity of an oligothiophene supergelator

  • Pampa Pratihar,
  • Suhrit Ghosh,
  • Vladimir Stepanenko,
  • Sameer Patwardhan,
  • Ferdinand C. Grozema,
  • Laurens D. A. Siebbeles,
  • Frank Würthner

DOI
https://doi.org/10.3762/bjoc.6.122
Journal volume & issue
Vol. 6, no. 1
pp. 1070 – 1078

Abstract

Read online

A bis(trialkoxybenzamide)-functionalized quaterthiophene derivative was synthesized and its self-assembly properties in solution were studied. In non-polar solvents such as cyclohexane, this quaterthiophene π-system formed fibril aggregates with an H-type molecular arrangement due to synergistic effect of hydrogen bonding and π-stacking. The self-assembled fibres were found to gelate numerous organic solvents of diverse polarity. The charge transport ability of such elongated fibres of quaterthiophene π-system was explored by the pulse radiolysis time resolved microwave conductivity (PR-TRMC) technique and moderate mobility values were obtained. Furthermore, initial AFM and UV-vis spectroscopic studies of a mixture of our electron-rich quaterthiophene derivative with the electron acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) revealed a nanoscale segregated assembly of the individual building blocks in the blend.

Keywords