Frontiers in Neuroscience (Oct 2021)

Kernelized k-Local Hyperplane Distance Nearest-Neighbor Model for Predicting Cerebrovascular Disease in Patients With End-Stage Renal Disease

  • Xiaobin Liu,
  • Xiran Zhang,
  • Yi Zhang,
  • Yijie Ding,
  • Weiwei Shan,
  • Yiqing Huang,
  • Liang Wang,
  • Xiaoyi Guo

DOI
https://doi.org/10.3389/fnins.2021.773208
Journal volume & issue
Vol. 15

Abstract

Read online

Detecting and treating cerebrovascular diseases are essential for the survival of patients with chronic kidney disease (CKD). Machine learning algorithms can be used to effectively predict stroke risk in patients with end-stage renal disease (ESRD). An imbalance in the amount of collected data associated with different risk levels can influence the classification task. Therefore, we propose the use of a kernelized k-local hyperplane nearest-neighbor model (KHKNN) for the effective prediction of stroke risk in patients with ESRD. We compared our proposed method with other conventional machine learning methods, which revealed that our method could effectively perform the task of classifying stroke risk.

Keywords