Shuiwen dizhi gongcheng dizhi (Sep 2021)
Predicting seismic landslide hazard in the Batang fault zone of the Qinghai-Tibet Plateau
Abstract
The Batang fault on the eastern Qinghai-Tibet Plateau has strong activity since the Holocene, where the geomorphology and geological structure is complex, and the historical earthquakes occurred frequently, which induced abundant landslides. For the long-term prevention of regional earthquake landslides in the Batang fault zone, based on analyzing the geological background and development characteristics of regional landslides, the Newmark model was used to complete the seismic landslide hazard assessment with exceeding probability 10% of 50 years in the Batang fault zone. The results show that the Batang fault zone and its adjacent Jinshajiang fault zone, the Jinsha River and its tributaries coast have the high seismic landslide hazard. The potential seismic landslide hazard zone has a general distribution trend of along the fault zone and the river canyons, which is significantly affected by the active faults and topography. The closer the slope to the fault is and the greater the slope angle is, the higher the seismic landslide hazard is. The Sichuan-Tibet Railway line under planning and construction extends from the Deda Town and Shama Town to the northwest and crosses the Jinsha River, and can traverse fewer zones with potential seismic landslide hazard. The planning and construction of Jinsha River hydropower project needs to strengthen the assessment and prevention of potential seismic landslide hazard. The potential seismic landslide hazard assessment results in the Batang fault zone can provide a scientific reference for the long-term prevention and control of earthquake landslides in the regional urban development and major engineering planning and construction.
Keywords