Nuclear Engineering and Technology (Apr 2020)

Risk-informed approach to the safety improvement of the reactor protection system of the AGN-201K research reactor

  • Ibrahim Ahmed,
  • Enrico Zio,
  • Gyunyoung Heo

Journal volume & issue
Vol. 52, no. 4
pp. 764 – 775

Abstract

Read online

Periodic safety reviews (PSRs) are conducted on operating nuclear power plants (NPPs) and have been mandated also for research reactors in Korea, in response to the Fukushima accident. One safety review tool, the probabilistic safety assessment (PSA), aims to identify weaknesses in the design and operation of the research reactor, and to evaluate and compare possible safety improvements. However, the PSA for research reactors is difficult due to scarce data availability. An important element in the analysis of research reactors is the reactor protection system (RPS), with its functionality and importance. In this view, we consider that of the AGN-201K, a zero-power reactor without forced decay heat removal systems, to demonstrate a risk-informed safety improvement study. By incorporating risk- and safety-significance importance measures, and sensitivity and uncertainty analyses, the proposed method identifies critical components in the RPS reliability model, systematically proposes potential safety improvements and ranks them to assist in the decision-making process. Keywords: Research reactor, Reactor protection system, Probabilistic safety assessment, Risk-informed design, Unavailability analysis, Sensitivity analysis