Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer (Jan 2023)
KLASIFIKASI SINYAL PHONOCARDIOGRAM MENGGUNAKAN METODE SHORTTIME FOURIER TRANSFORM DAN SUPPORT VECTOR MACHINE
Abstract
Penggunaan phonocardiogram (PCG) dalam mengekstraksi informasi-informasi secara elektronik membutuhkan analisis sinyal yang kompleks. Namun, PCG memiliki keunggulan bersifat non invasif dan hemat dibandingkan dengan electrocardiogram (EKG). Tujuan penelitian ini mengembangkan sebuah perangkat klasifikasi untuk alat bantu diagnosis berdasarkan metode shorttime fourier transform (STFT) untuk ekstraksi fitur dan support vector machine (SVM) untuk klasifikasi. Kinerja sistem yang telah dirancang menggunakan dataset sekunder, dengan jumlah 2.141 sinyal PCG yang terdiri dari 1958 normal dan 183 abnormal. Pengujian kinerja menggunakan beberapa variasi rancangan, yaitu Hamming, Hanning, dan Blackman window pada STFT dan variasi kernel serta nilai C parameter pada SVM. Berdasarkan hasil pengujian variasi jenis window pada STFT, membuktikan bahwa nilai terbaik didapatkan oleh Hamming window dengan nilai sensitifitas 62.24%, spesitifitas 89.47%, area under ROC curve (AUC) 0.75, serta akurasi sebesar 65.62%. Hasil dari variasi C parameter sebesar 1000 pada proses klasifikasi mendapatkan hasil evaluasi kinerja terbaik pada masing-masing kernel, nilai AUC pada kernel linear sebesar 0.73, 0.78 pada kernel polynomial, dan 0.83 pada kernel radial basis function (RBF). Penelitian ini membuktikan bahwa penggunaan Hamming window pada ekstraksi fitur dan nilai C parameter 1000, serta variasi kernel RBF pada klasifikasi sebagai bentuk model terbaik sistem PCG berbasis STFT dan SVM.
Keywords