Metabolites (Apr 2020)

MOTA: Network-Based Multi-Omic Data Integration for Biomarker Discovery

  • Ziling Fan,
  • Yuan Zhou,
  • Habtom W. Ressom

DOI
https://doi.org/10.3390/metabo10040144
Journal volume & issue
Vol. 10, no. 4
p. 144

Abstract

Read online

The recent advancement of omic technologies provides researchers with the possibility to search for disease-associated biomarkers at the system level. The integrative analysis of data from a large number of molecules involved at various layers of the biological system offers a great opportunity to rank disease biomarker candidates. In this paper, we propose MOTA, a network-based method that uses data acquired at multiple layers to rank candidate disease biomarkers. The networks constructed by MOTA allow users to investigate the biological significance of the top-ranked biomarker candidates. We evaluated the performance of MOTA in ranking disease-associated molecules from three sets of multi-omic data representing three cohorts of hepatocellular carcinoma (HCC) cases and controls with liver cirrhosis. The results demonstrate that MOTA allows the identification of more top-ranked metabolite biomarker candidates that are shared by two different cohorts compared to traditional statistical methods. Moreover, the mRNA candidates top-ranked by MOTA comprise more cancer driver genes compared to those ranked by traditional differential expression methods.

Keywords