Регуляторные исследования и экспертиза лекарственных средств (Dec 2023)
Metabolic model for laboratory control of anti-ischaemic therapy effectiveness: a case study of nicorandil
Abstract
Scientific relevance. A key anti-ischaemic mechanism of some medicinal products involves their effects on the metabolism of endothelial vasodilators, particularly the synthesis of nitric oxide from arginine and its precursor citrulline.Aim. The study was aimed to determine whether the plasma time course of guanidine derivatives (arginine precursors) is applicable to laboratory control of anti-ischaemic therapy effectiveness using a single oral dose of nicorandil in patients with coronary heart disease as a case study.Materials and methods. The authors used high-performance liquid chromatography to determine metabolites. Blood samples for analysis were obtained from 30 patients with angina pectoris (Grade II–III, Canadian Cardiovascular Society) and 30 healthy donors. All the study participants received a single oral dose of 20 mg nicorandil after 10 h of fasting.Results. At baseline, patients showed significantly higher plasma citrulline levels than donors. However, the elevated levels decreased to the healthy range after nicorandil administration. Plasma arginine levels in patients showed a statistically significant increase following nicorandil administration. Plasma homoarginine levels in patients remained reduced both before and after dosing. Nicorandil did not influence elevated levels of the endogenous nitric oxide synthase inhibitor (asymmetrical dimethylarginine).Conclusions. In addition to the established mechanisms responsible for altering cell metabolism, nicorandil enhances the contribution of citrulline to arginine resynthesis. It is reasonable to include citrulline and arginine, which are involved in the vasodilator response, in model schemes for laboratory control of the effectiveness of anti-ischaemic therapy.
Keywords