Communications in Advanced Mathematical Sciences (Dec 2022)
On Weakly 1-Absorbing Primary Ideals of Commutative Semirings
Abstract
Let $R$ be a commutative semiring with $ 1 \neq0$. In this paper, we study the concept of weakly 1-absorbing primary ideal which is a generalization of 1-absorbing ideal over commutative semirings . A proper ideal $I$ of a semiring $R$ is called a weakly 1-absorbing primary ideal if whenever nonunit elements $a,b,c \in R$ and $0 \neq abc \in I$, then $ab \in I $, or $c \in \sqrt{I}$. A number of results concerning weakly 1-absorbing primary ideals and examples of weakly 1-absorbing primary ideals are given. An ideal is called a subtractive ideal $I$ of a semiring $R$ is an ideal such that if $ x,x+y\in I$, then $ y\in I$. Subtractive ideals or k-ideals are helpful in proving in many results related to ideal theory over semirings.
Keywords