Frontiers in Pharmacology (Apr 2022)

A Supervised ML Applied Classification Model for Brain Tumors MRI

  • Zhengyu Yu,
  • Zhengyu Yu,
  • Qinghu He,
  • Jichang Yang,
  • Min Luo,
  • Min Luo

DOI
https://doi.org/10.3389/fphar.2022.884495
Journal volume & issue
Vol. 13

Abstract

Read online

Brain Tumor originates from abnormal cells, which is developed uncontrollably. Magnetic resonance imaging (MRI) is developed to generate high-quality images and provide extensive medical research information. The machine learning algorithms can improve the diagnostic value of MRI to obtain automation and accurate classification of MRI. In this research, we propose a supervised machine learning applied training and testing model to classify and analyze the features of brain tumors MRI in the performance of accuracy, precision, sensitivity and F1 score. The result presents that more than 95% accuracy is obtained in this model. It can be used to classify features more accurate than other existing methods.

Keywords