Animal Bioscience (Oct 2024)

Revealing the global mechanism related to carnosine synthesis in the pectoralis major of slow-growing Korat chickens using a proteomic approach

  • Panpradub Sinpru,
  • Chanadda Suwanvichanee,
  • Rujjira Bunnom,
  • Satoshi Kubota,
  • Jirawat Yongsawatdigul,
  • Wittawat Molee,
  • Kanjana Thumanu,
  • Amonrat Molee

DOI
https://doi.org/10.5713/ab.24.0119
Journal volume & issue
Vol. 37, no. 10
pp. 1692 – 1701

Abstract

Read online

Objective This study aimed to find global mechanisms related to carnosine synthesis in slow-growing Korat chickens (KRC) using a proteomic approach. Methods M. pectoralis major samples were collected from 10-week-old female KRC including low-carnosine (LC, 2,756.6±82.88 μg/g; n = 5) and high-carnosine (HC, 4,212.5 ±82.88 μg/g; n = 5). Results We identified 152 common proteins, and 8 of these proteins showed differential expression between the LC and HC groups (p<0.05). Heat shock 70 kDa protein 8, Heat shock 70 kDa protein 2, protein disulfide isomerase family A, member 6, and endoplasmic reticulum resident protein 29 were significantly involved in protein processing in the endoplasmic reticulum pathway (false discovery rate<0.05), suggesting that the pathway is related to differential carnosine concentration in the M. pectoralis major of KRC. A high concentration of carnosine in the meat is mainly involved in low abundances of Titin isoform Ch12 and Connectin and high abundances of M-protein to maintain homeostasis during muscle contraction. These consequences improve meat characteristics, which were confirmed by the principal component analysis. Conclusion Carnosine synthesis may occur when muscle cells need to recover homeostasis after being interfered with carnosine synthesis precursors, leading to improved muscle function. To the best of our knowledge, this is the first study to describe in detail the global molecular mechanisms in divergent carnosine contents in meat based on the proteomic approach.

Keywords