Ecology and Evolution (Nov 2021)

Permafrost response to temperature rise in carbon and nutrient cycling: Effects from habitat‐specific conditions and factors of warming

  • Wenlong Gao,
  • Weimin Sun,
  • Xingliang Xu

DOI
https://doi.org/10.1002/ece3.8271
Journal volume & issue
Vol. 11, no. 22
pp. 16021 – 16033

Abstract

Read online

Abstract Permafrost is experiencing climate warming at a rate that is two times faster than the rest of the Earth's surface. However, it is still lack of a quantitative basis for predicting the functional stability of permafrost ecosystems in carbon (C) and nutrient cycling. We compiled the data of 708 observations from 89 air‐warming experiments in the Northern Hemisphere and characterized the general effects of temperature increase on permafrost C exchange and balance, biomass production, microbial biomass, soil nutrients, and vegetation N dynamics through a meta‐analysis. Also, an investigation was made on how responses might change with habitat‐specific (e.g., plant functional groups and soil moisture status) conditions and warming variables (e.g., warming phases, levels, and timing). The net ecosystem C exchange (NEE) was found to be downregulated by warming as a result of a stronger sensitivity to warming in respiration (15.6%) than in photosynthesis (6.2%). Vegetation usually responded to warming by investing more C to the belowground, as belowground biomass increased much more (30.1%) than aboveground biomass (2.9%). Warming had a minor effect on microbial biomass. Warming increased soil ammonium and nitrate concentrations. What's more, a synthesis of 70 observations from 11 herbs and 9 shrubs revealed a 2.5% decline of N in green leaves. Compared with herbs, shrubs had a stronger response to respiration and had a decline in green leaf N to a greater extent. Not only in dry condition did green leaf N decline with warming but also in wet conditions. Warming in nongrowing seasons would negatively affect soil water, C uptake, and biomass production during growing seasons. Permafrost C loss and vegetation N decline may increase with warming levels and timing. Overall, these findings suggest that besides a positive C cycling–climate feedback, there will be a negative feedback between permafrost nutrient cycling and climate warming.

Keywords