Departamento Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, Cartagena, 30202 Murcia, Spain
María-Teresa Martínez-Inglés
Centro Universitario de la Defensa, Universidad Politécnica de Cartagena, Base Aérea de San Javier. Academia General del Aire, 30720 Murcia, Spain
Jose-Maria Molina-Garcia-Pardo
Departamento Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, Cartagena, 30202 Murcia, Spain
Jordi Romeu
CommSenslab, Department of Signal Theory and Communications, School of Telecommunications Engineering Technical University of Catalonia (Universitat Politecnica de Catalunya, UPC) Campus Nord UPC, Edif. D-3 Jordi Girona, 1-3, 08034 Barcelona, Spain
Lluis Jofre-Roca
CommSenslab, Department of Signal Theory and Communications, School of Telecommunications Engineering Technical University of Catalonia (Universitat Politecnica de Catalunya, UPC) Campus Nord UPC, Edif. D-3 Jordi Girona, 1-3, 08034 Barcelona, Spain
Christian Ballesteros-Sánchez
CommSenslab, Department of Signal Theory and Communications, School of Telecommunications Engineering Technical University of Catalonia (Universitat Politecnica de Catalunya, UPC) Campus Nord UPC, Edif. D-3 Jordi Girona, 1-3, 08034 Barcelona, Spain
José-Víctor Rodríguez
Departamento Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, Cartagena, 30202 Murcia, Spain
Antonio Mateo-Aroca
Departamento Automática, Ingeniería Eléctrica y Tecnología Electrónica, Universidad Politécnica de Cartagena, Cartagena, 30202 Murcia, Spain
The next generation of connected and autonomous vehicles will be equipped with high numbers of antennas operating in a wide frequency range for communications and environment sensing. The study of 3D spatial angular responses and the radiation patterns modified by vehicular structure will allow for better integration of the associated communication and sensing antennas. The use of near-field monostatic focusing, applied with frequency-dimension scale translation and differential imaging, offers a novel imaging application. The objective of this paper is to theoretically and experimentally study the method of obtaining currents produced by an antenna radiating on top of a vehicular platform using differential imaging. The experimental part of the study focuses on measuring a scaled target using an imaging system operating in a terahertz band—from 220 to 330 GHz—that matches a 5G frequency band according to frequency-dimension scale translation. The results show that the induced currents are properly estimated using this methodology, and that the influence of the bandwidth is assessed.