Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) (Mar 2023)
Tajweed-YOLO: Object Detection Method for Tajweed by Applying HSV Color Model Augmentation on Mushaf Images
Abstract
Tajweed is a basic knowledge of learning to read the Al-Qur’an correctly. Tajweed has many laws grouped into several parts so that only some people can memorize and implement Tajweed properly. Therefore, it is necessary to have an automatic detection system to facilitate the recognition of Tajweed, which can be used daily. This study presents Tajweed-YOLO, which applies the HSV color augmentation model to detect Tajweed objects in Mushaf images using YOLO. The contribution to this study was to compare the three versions of You Only Look Once (YOLO), i.e., YOLOv5, YOLOv6, and YOLOv7, and usage of the HSV color model augmentation to improve Tajweed detection performance. Comparing the three YOLO versions aims to solve problems in detecting small objects and recognizing various forms of Mushaf writing fonts in Tajweed detection. Meanwhile, the HSV color model aims to recognize Tajweed objects in various Mushaf and handle minority class problems. In this study, we collected four different Al-Qur’an mushaf with 10 Tajweed classes. The augmentation process can increase the detection performance by up to 85% compared to without augmentation 6th Class (Mad Jaiz Munfashil) using YOLOv6. The comparison of three YOLO versions concluded that YOLOv7 was better than YOLOv5 and YOLOv6, seen in data with augmentation and without augmentation. The evaluation results of mAP0.5 on 17 test data on the YOLOv7, YOLOv6, and YOLOv5 models are 80%, 69%, and 71%, respectively. These results prove that this research model’s results are suitable for the real-time detection of Tajweed.
Keywords