eLife (Aug 2020)

Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation

  • Lu Lv,
  • Peihao Chen,
  • Longzhi Cao,
  • Yamei Li,
  • Zhi Zeng,
  • Yue Cui,
  • Qingcui Wu,
  • Jiaojiao Li,
  • Jian-Hua Wang,
  • Meng-Qiu Dong,
  • Xiangbing Qi,
  • Ting Han

DOI
https://doi.org/10.7554/eLife.59994
Journal volume & issue
Vol. 9

Abstract

Read online

Molecular-glue degraders mediate interactions between target proteins and components of the ubiquitin-proteasome system to cause selective protein degradation. Here, we report a new molecular glue HQ461 discovered by high-throughput screening. Using loss-of-function and gain-of-function genetic screening in human cancer cells followed by biochemical reconstitution, we show that HQ461 acts by promoting an interaction between CDK12 and DDB1-CUL4-RBX1 E3 ubiquitin ligase, leading to polyubiquitination and degradation of CDK12-interacting protein Cyclin K (CCNK). Degradation of CCNK mediated by HQ461 compromised CDK12 function, leading to reduced phosphorylation of a CDK12 substrate, downregulation of DNA damage response genes, and cell death. Structure-activity relationship analysis of HQ461 revealed the importance of a 5-methylthiazol-2-amine pharmacophore and resulted in an HQ461 derivate with improved potency. Our studies reveal a new molecular glue that recruits its target protein directly to DDB1 to bypass the requirement of a substrate-specific receptor, presenting a new strategy for targeted protein degradation.

Keywords