Inorganics (Apr 2023)

One−Step Synthesis of Fe−Based Metal–Organic Framework (MOF) Nanosheet Array as Efficient Cathode for Hybrid Supercapacitors

  • Jicheng Zhao,
  • Liu Yang,
  • Ruizhi Li,
  • Yingke Zhou

DOI
https://doi.org/10.3390/inorganics11040169
Journal volume & issue
Vol. 11, no. 4
p. 169

Abstract

Read online

With the flourishing development of the new energy automobile industry, developing novel electrode materials to balance the capacity between cathode and anode is a challenge for hybrid supercapacitors. In comparison to conventional inorganic materials, metal–organic frameworks materials offer higher porosity and greater surface area for use in supercapacitors. Herein, we proposed a facile one–pot solvothermal technique to synthesize an Fe(BPDC) nanosheet array on Ni foam, which we then applied as a binder–free cathode for a supercapacitor. The solvothermal time was adjusted to ensure a desirable morphology of the final product. Benefitting from the impressive nanosheet morphology, to a great extent, Fe(BPDC) has solved the problem of volume expansion of Fe–based electrode materials during cycling, and exhibits brilliant electrochemical performances, i.e., high specific capacitance (17.54 F/cm2 at 1 mV/s) and satisfactory cycle performance (129% retention after 10,000 cycles). Furthermore, Fe(BPDC) and activated carbon (AC) have been chosen to assemble a hybrid supercapacitor (namely Fe(BPDC)//AC), delivering an energy density of 45.64 Wh/kg at the power density of 4919.6 W/kg with 87.05% capacitance retention after 10,000 cycles. These brilliant results prove that Fe(BPDC) material has great potential as the cathode of supercapacitors.

Keywords