International Journal of Photoenergy (Jan 2013)

A Simple Semi-Empirical Model for the Estimation of Photosynthetically Active Radiation from Satellite Data in the Tropics

  • S. Janjai,
  • A. Sripradit,
  • R. Wattan,
  • S. Buntoung,
  • S. Pattarapanitchai,
  • I. Masiri

DOI
https://doi.org/10.1155/2013/857072
Journal volume & issue
Vol. 2013

Abstract

Read online

This paper presents a simple semi-empirical model for estimating global photosynthetically active radiation (PAR) under all sky conditions. The model expresses PAR as a function of cloud index, aerosol optical depth, total ozone column, solar zenith angle, and air mass. The formulation of the model was based on a four-year period (2008–2011) of PAR data obtained from the measurements at four solar monitoring stations in a tropical environment of Thailand. These are Chiang Mai (18.78°N, 98.98°E), Ubon Ratchathani (15.25°N, 104.87°E), Nakhon Pathom (13.82°N, 100.04°E), and Songkhla (7.20°N, 100.60°E). The cloud index was derived from MTSAT-1R satellite, whereas the aerosol optical depth was obtained from MODIS/Terra satellite. For the total ozone column, it was retrieved from OMI/Aura satellite. The model was validated against independent data set from the four stations. It was found that hourly PAR estimated from the proposed model and that obtained from the measurements were in reasonable agreement, with the root mean square difference (RMSD) and mean bias difference (MBD) of 14.3% and −5.8%, respectively. In addition, for the case of monthly average hourly PAR, RMSD and MBD were reduced to 11.1% and −5.1%, respectively.