Scientific Reports (Mar 2021)

Strain-induced yellow to blue emission tailoring of axial InGaN/GaN quantum wells in GaN nanorods synthesized by nanoimprint lithography

  • Geoffrey Avit,
  • Yoann Robin,
  • Yaqiang Liao,
  • Hu Nan,
  • Markus Pristovsek,
  • Hiroshi Amano

DOI
https://doi.org/10.1038/s41598-021-86139-9
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 10

Abstract

Read online

Abstract GaN nanorods (NRds) with axial InGaN/GaN MQWs insertions are synthesized by an original cost-effective and large-scale nanoimprint-lithography process from an InGaN/GaN MQWs layer grown on c-sapphire substrates. By design, such NRds exhibit a single emission due to the c-axis MQWs. A systematic study of the emission of the NRds by time-resolved luminescence (TR-PL) and power dependence PL shows a diameter-controlled luminescence without significant degradation of the recombination rate thanks to the diameter-controlled strain tuning and QSCE. A blueshift up to 0.26 eV from 2.28 to 2.54 eV (543 nm to 488 nm) is observed for 3.2 nm thick InGaN/GaN QWs with an In composition of 19% when the NRds radius is reduced from 650 to 80 nm. The results are consistent with a 1-D based strain relaxation model. By combining state of the art knowledge of c-axis growth and the strong strain relieving capability of NRds, this process enables multiple and independent single-color emission from a single uniform InGaN/GaN MQWs layer in a single patterning step, then solving color mixing issue in InGaN based nanorods LED devices.