Mehran University Research Journal of Engineering and Technology (Jul 2022)

Effect of temperature on the polymorphs of titania (TiO2) developed by sol-gel and hydrothermal processes for thin film uses

  • Aqsa Shaikh,
  • Muddassir Ali Memon,
  • M. Wasim Akhtar

DOI
https://doi.org/10.22581/muet1982.2203.16
Journal volume & issue
Vol. 41, no. 3
pp. 161 – 167

Abstract

Read online

Titanium dioxide (TiO2) has been utilized for photovoltaic devices mostly as electron selective ply. Most of the transition metal complexes like TiO2 possess wider band gap to predominant relying on morphology of nano-particles. Most of the metal oxides possess excellent ability of harvesting extensive part of sunlight. This study reports, synthesis of TiO2 by using two different techniques i.e., sol-gel and hydrothermal. Later nano films was applied on fluorine doped tin oxide glass through spin coating at ambient temperature. Particles of TiO2 were synthesized at different temperatures however rest of the variable like solvent, concentration and amount of precursor were static. Nanoparticles of anatase titania synthesized through sol-gel had higher crystallinity. Particle size of synthesized particles was 12.2 nm at 25o C. Subsequently particles produced through hydrothermal procedure were large with an average particle size of 16 nm at 100o C. FTIR further confirmed the synthesis of anatase titania at 400-800 cm-1. X-ray diffraction technique also confirmed the synthesis of titania at 25.3o ,38.0o, 47o, 54.5o, 62.7o and 78o . UV-visible spectroscopy was performed to analyze optical properties exhibiting peak absorbance at 424 nm. This synthesized TiO2 anatase is extensively used for photovoltaic application.