Sustainable Energy Research (Nov 2023)
The effects of saline water preheating and heat recovery in a vapour-based multistage solar still
Abstract
Abstract The current study complements a broader body of research on solar distillation, including research on heat recycling capabilities and other related factors in multistage solar distillation systems. Solar stills can be used in various applications to provide safe and clean water from natural sources. This study is based on field data collected, analysed, and interpreted over ten (10) months. The solar still operated at atmospheric pressure and produced a distillate by evaporating saline water (SW) at ~ 100 °C. The maximum SW preheating was 75.5 °C with 30,821.04 kJ/m2 day collected by the solar collectors. The corresponding overall thermal efficiency of the test rig was 33.83%. The overall thermal efficiency decreased with increasing wind speed, averaging at 3.12 m/s to 28.31% due to increased heat loss to the environment when 30,780 kJ/m2day was collected. It further declined to 5.89% with low meteorological conditions of 209.81 W/m2, 15.66 °C and 2.66 m/s, respectively, on average. However, the benefits of increased wind speed were enhanced condensation and productivity. The study also found that the ideal thermal energy delivery rate was $$\sim$$ ∼ 600 W/m2 or an impulsive mode at higher solar insolation. A balanced condensation rate, SW preheating, heat recovery and overall thermal efficiency can be achieved at this delivery rate. A significant correlation was observed, indicating that the simultaneous increase in the average heat input rate and wind velocities positively impacted distillate output. Conversely, low average wind velocity improved overall thermal efficiency, resulting in a distillate output of 6730 ml for the five stacked stages, despite a slight discrepancy of 3.2 W/m2 in the heat input rate.
Keywords