Chemosensors (Nov 2020)

Manganese-Doped Zinc Oxide Nanostructures as Potential Scaffold for Photocatalytic and Fluorescence Sensing Applications

  • Deepika Thakur,
  • Anshu Sharma,
  • Abhishek Awasthi,
  • Dharmender Singh Rana,
  • Dilbag Singh,
  • Sadanand Pandey,
  • Sourbh Thakur

DOI
https://doi.org/10.3390/chemosensors8040120
Journal volume & issue
Vol. 8, no. 4
p. 120

Abstract

Read online

Herein, we report the photocatalytic and fluorescence sensing applications of manganese-doped zinc oxide nanostructures synthesized by a solution combustion technique, using zinc nitrate as an oxidizer and urea as a fuel. The synthesized Mn-doped ZnO nanostructures have been analyzed in terms of their surface morphology, phase composition, elemental analysis, and optical properties with the help of scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and UV-Visible (UV-Vis) spectroscopy. A careful observation of the SEM micrograph reveals that the synthesized material was porous and grown in very high density. Due to a well-defined porous structure, the Mn-doped ZnO nanostructures can be used for the detection of ciprofloxacin, which was found to exhibit a significantly low limit of detection (LOD) value i.e., 10.05 µM. The synthesized Mn-doped ZnO nanostructures have been further analyzed for interfering studies, which reveals that the synthesized sensor material possesses very good selectivity toward ciprofloxacin, as it detects selectively even in the presence of other molecules. The synthesized Mn-doped ZnO nanostructures have been further analyzed for the photodegradation of methyl orange (MO) dye. The experimental results reveal that Mn-doped ZnO behaves as an efficient photocatalyst. The 85% degradation of MO has been achieved in 75 min using 0.15 g of Mn-doped ZnO nanostructures. The observed results clearly confirmed that the synthesized Mn-dopedZnO nanostructures are a potential scaffold for the fabrication of sensitive and robust chemical sensors as well as an efficient photocatalyst.

Keywords