Entropy (Aug 2022)
Index Coding with Multiple Interpretations
Abstract
The index coding problem consists of a system with a server and multiple receivers with different side information and demand sets, connected by a noiseless broadcast channel. The server knows the side information available to the receivers. The objective is to design an encoding scheme that enables all receivers to decode their demanded messages with a minimum number of transmissions, referred to as an index code length. The problem of finding the minimum length index code that enables all receivers to correct a specific number of errors has also been studied. This work establishes a connection between index coding and error-correcting codes with multiple interpretations from the tree construction of nested cyclic codes. The notion of multiple interpretations using nested codes is as follows: different data packets are independently encoded, and then combined by addition and transmitted as a single codeword, minimizing the number of channel uses and offering error protection. The resulting packet can be decoded and interpreted in different ways, increasing the error correction capability, depending on the amount of side information available at each receiver. Motivating applications are network downlink transmissions, information retrieval from datacenters, cache management, and sensor networks.
Keywords