Viruses (May 2022)

Temporal Dynamics of the Ruminant Type I IFN-Induced Antiviral State against Homologous Parainfluenza Virus 3 Challenge In Vitro

  • Min Sun,
  • Fei Hao,
  • Wenliang Li,
  • Zilong Cheng,
  • Wenwen Zhang,
  • Leilei Yang,
  • Li Mao,
  • Maojun Liu

DOI
https://doi.org/10.3390/v14051025
Journal volume & issue
Vol. 14, no. 5
p. 1025

Abstract

Read online

Viruses have evolved diverse strategies to evade the antiviral response of interferons (IFNs). Exogenous IFNs were applied to eliminate the counteracting effect and possess antiviral properties. Caprine parainfluenza virus 3 (CPIV3) and bovine parainfluenza virus type 3 (BPIV3) are important pathogens associated with respiratory diseases in goat and cattle, respectively. To explore the feasibility of type I IFNs for control of CPIV3 and BPIV3 infection, the activated effects of IFN-stimulated genes (ISGs) and the immunomodulation responses of goat IFN-α were detected by transcriptomic analysis. Then, the antiviral efficacy of goat IFN-α and IFN-τ against CPIV3 and BPIV3 infection in MDBK cells was evaluated using different treatment routes at different infection times. The results showed that CPIV3 infection inhibited the production of type I IFNs, whereas exogenous goat IFN-α induced various ISGs, the IFN-τ encoding gene, and a negligible inflammatory response. Consequently, goat IFN-α prophylaxis but not treatment was found to effectively modulate CPIV3 and BPIV3 infection; the protective effect lasted for 1 week, and the antiviral activity was maintained at a concentration of 0.1 μg/mL. Furthermore, the antiviral activity of goat IFN-τ in response to CPIV3 and BPIV3 infection is comparable to that of goat IFN-α. These results corroborate that goat IFN-α and IFN-τ exhibit prophylactic activities in response to ruminant respiratory viral infection in vitro, and should be further investigated for a potential use in vivo.

Keywords