Scientific Reports (Feb 2025)
Web tension field action of a stainless steel section with stiffened web and folded flanges under bending and shear interaction
Abstract
Abstract Compared with ordinary steels, stainless steels possess advantages such as robust corrosion resistance, beautiful appearance, and excellent ductility. This article investigated the performance of a novel C-shaped folded flange section stainless steel beam with web stiffeners under bending and shear interaction, with a focus on the effect of the web tension field on its performance after transverse constraint. Stiffeners can effectively promote the bearing capacity of cold-formed thin-wall components, and folded flanges are convenient for connecting to floors, thus expanding the application range of stainless steel components. This study detailed the three-point bending tests conducted on specimens with shear span ratios of 1.5 and 2, as well as the numerical analysis methods employed. The experimental results of ultimate bearing capacity were compared with the predictions made by the Direct Strength Method (DSM) and Continuous Strength Method (CSM) adopted in current design codes. It was found that positioning the stiffeners closer to the compression flange enhanced the bearing capacity of the member, and this enhancement effect became more pronounced with an increase in the shear span ratio. Furthermore, the Continuous Strength Method (CSM) predicts the moment and shear bearing capacity more accurately. Furthermore, the Continuous Strength Method (CSM) provided more precise predictions of both the bending moment and shear capacity under the web tension field. The research results are helpful to provide theoretical basis and technical support for such members in engineering applications.
Keywords