Advances in Materials Science and Engineering (Jan 2021)
Research on Dynamic Balance of Spindle Rotor System Based on Particle Swarm Optimization
Abstract
The dynamic balance is a significant issue for the nonlinear dynamic characteristics of the spindle rotor system. However, there is a problem that the dynamic balance is lacking detailed study on optimization method. In the paper, a modal dynamic balance optimization model of spindle rotor system is proposed, which can intend to improve the accuracy of spindle rotor system modal dynamic balance. Because the multiorder unbalance components are the main spindle rotor system mode shapes, the particle swarm optimization (PSO) method is adopted. The sum of squares of residual vibration after balancing is taken as the optimization objective, and the correction is presented as the optimization variable in the optimization model. The optimal correction weight of every unbalance component is calculated through a modal matrix equation of PSO. The vibration amplitude that is greatly reduced after optimization balance is presented under different conditions. The balancing effect shows a better dynamic characteristic than that of traditional methods. And the fluctuation range of the axis track of the rotor system also shows reductive phenomenon. The proposed optimization spindle rotor system model is well verified through experiments. It can contribute a theoretical optimization foundation for available dynamic balance in spindle rotor system.