Applied Sciences (Aug 2020)

Design of an Axial Turbine for Highly Downsized Internal Combustion Engines

  • Lorenzo Baietta,
  • Mamdouh Alshammari,
  • Apostolos Pesyridis,
  • Dhrumil Gohil

DOI
https://doi.org/10.3390/app10175935
Journal volume & issue
Vol. 10, no. 17
p. 5935

Abstract

Read online

This paper describes and discusses the development of an axial turbocharger turbine concept as a potential substitute to commercial radial turbines for high-volume production. As turbo-lag is one of the main issues related to the inertia of the rotating parts in a turbocharger, leading to less responsive and drive-cycle efficient power units, the use of axial turbines, with their inherently lower inertia than radial types for the same application, enables the efficient reduction of the spool-up time of the system, to the benefit of the driving experience and emissions. However, axial turbines for this application usually show complicated blades and level of twist, leading to efficient but expensive designs compared to their radial counterparts. Based on this challenge, the idea of comparing prismatic (generally less efficient, but cheaper) and twisted 3D-bladed axial turbines showed that for lower blade aspect ratios, the efficiency is of the same order. For these reasons, many turbines with a range of different sizes were designed with both layouts (3D and prismatic blades) and compared. Further, the use of 3D optical scanning, as well as dyno-calibrated 1D engine models enabled the gathering of invaluable data to design the proposed solution and compare it to the Original Equipment Manufacturer (OEM) version. Thanks to these processes, the comparison between the proposed design and the OEM one was not limited to the performance, and also included the manufacturing costs, which were calculated via Computer Aided Manufacturing (CAM) programs, with the limitation of using only Computer Numerical Control (CNC) machining for production. To conclude, the work showed a notable performance superiority of the proposed turbine in respect to the OEM one, despite a slightly higher estimated production cost.

Keywords