Scientific Reports (Jun 2017)
Ternary Resistance Switching Memory Behavior Based on Graphene Oxide Embedded in a Polystyrene Polymer Layer
Abstract
Abstract Nonvolatile ternary memory devices were fabricated using the composite of polystyrene (PS) and graphene oxide(GO) as active layers, which have an reliable intermediate state. The current-voltage (I-V) curves of the indium tin oxide (ITO)/PS+GO/Al device under the external applied voltages exhibited current tri-stability with three conductivity states, which clearly revealed ternary memory performance. Under the stimulus of the external voltage, a stable intermediate conductivity state was observed. In the write-read-erase-read test, the ITO/PS+GO/Al device exhibited rewritable, nonvolatile, ternary memory properties. The resistance as functions of the time indicated that three conductivity states held for 2 × 105 s, suggesting that the good stability of the ITO/PS+GO/Al devices. HRTEM and XPS observation indicated that the Al top electrode reacted with oxygen within in GO.