Parametric Optimization of Ball-Milled Bimetallic Nanoadsorbents for the Effective Removal of Arsenic Species
Mercyrani Babudurai,
Karthick Sekar,
Onyekachi Michael Nwakanma,
Ravichandran Manisekaran,
Marco A. Garza-Navarro,
Velumani Subramaniam,
Natanael Cuando-Espitia,
Halaney David
Affiliations
Mercyrani Babudurai
Nanoscience and Nanotechnology Program, Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional (CINVESTAV-IPN), Col. San Pedro Zacatenco, Mexico City 07360, Mexico
Karthick Sekar
Nanoscience and Nanotechnology Program, Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional (CINVESTAV-IPN), Col. San Pedro Zacatenco, Mexico City 07360, Mexico
Onyekachi Michael Nwakanma
Department of Electrical Engineering (SEES), Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional (CINVESTAV-IPN), Col. San Pedro Zacatenco, Mexico City 07360, Mexico
Ravichandran Manisekaran
Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES) Leon Unit, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, Leon 37684, Mexico
Marco A. Garza-Navarro
Department of Mechanical and Electrical Engineering, Universidad Autonoma de Nuevo Leon, San Nicolas de Los Garza, Nuevo Leon, Mexico City 66451, Mexico
Velumani Subramaniam
Department of Electrical Engineering (SEES), Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional (CINVESTAV-IPN), Col. San Pedro Zacatenco, Mexico City 07360, Mexico
Natanael Cuando-Espitia
CONACyT, Applied Physics Group, DICIS, University of Guanajuato, Salamanca, Guanajuato 368850, Mexico
Halaney David
J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
Arsenic (As) removal from portable water bodies using the nanotechnology-based adsorption technique offers a unique method to lower the As contamination below the World Health Organization’s (WHO) maximum contaminant level (MCL). This work promotes a systematic methodological-based adsorption study by optimizing the different parameters that affect As removal using TiO2/γ-Fe2O3 nanocomposites (T/M NCs) prepared with the green, facile, and cost-effective ball milling method. The studies using X-ray Diffraction (XRD) illustrate the structural modifications with variations in the constituting T/M ratios, with high-resolution transmission electron microscopy (HRTEM) being used for the NC morphological studies. The optical characterization studies showed that bandgap tuning between 2–2.8 eV reduced the maghemite (γ-Fe2O3) content in the NCs and the elemental analysis confirmed the desired stoichiometry of the NCs. The magnetic measurements showed that the magnetic interaction among the particles tends towards exchange coupling behavior as the weight ratio of γ-Fe2O3 content decreases in the NCs. The adsorption studies using the most efficient NCs with an optimized condition (NC dose (8 g/L), contact time (15 min), As concentration (2 ppm), and pH (4)) resulted in a more than 99% removal of As species, suggesting the excellent behavior of the synthesized nanomaterial for water treatment and making it more economical than other competing adsorption techniques and materials.