Frontiers in Cell and Developmental Biology (Feb 2022)

Circular RNA circ0007360 Attenuates Gastric Cancer Progression by Altering the miR-762/IRF7 Axis

  • Yawei Xing,
  • Hongxia Chen,
  • Zixiang Guo,
  • Xiaodong Zhou

DOI
https://doi.org/10.3389/fcell.2022.789073
Journal volume & issue
Vol. 10

Abstract

Read online

Gastric cancer is a major health burden worldwide. Circular RNAs (circRNAs) are a novel family of noncoding RNAs that are involved in multiple types of cancers, including gastric cancer. As biological functions and the underlying molecular mechanisms of the newly identified circRNA circ0007360 have not been investigated, our present study focused on the role of circ0007360 in the progression of gastric cancer. After characterizing circ0007360 as a cytoplasmic circRNA, we revealed the inhibitory effects of circ0007260 on the survival, migration, invasion, and stemness of gastric cancer cells. Subsequently, miR-762 was identified as a direct target microRNA (miRNA) of circ0007360 and was proved to act as a vital downstream transcript to fulfill the tumor-promoting effects in the absence of circ0007360. Furthermore, we demonstrated that interferon regulatory factor 7 (IRF7), which was validated as a target gene of miR-762, serves as an indirect target of circ0007360 to attenuate the progression of gastric cancer. Moreover, in vivo experiments confirmed the potentiation of gastric cancer cell growth and stemness upon depletion of circ0007360. In summary, our results revealed that activation of the circ0007360/miR-762/IRF7 axis is a novel mechanism for the attenuation of gastric cancer progression. Our study unveils the diagnostic and therapeutic values of circ0007360 in patients with gastric cancer.

Keywords