Bacterial Endophytes of Spring Wheat Grains and the Potential to Acquire Fe, Cu, and Zn under Their Low Soil Bioavailability
Orysia Makar,
Agnieszka Kuźniar,
Ostap Patsula,
Yana Kavulych,
Volodymyr Kozlovskyy,
Agnieszka Wolińska,
Ewa Skórzyńska-Polit,
Olena Vatamaniuk,
Olga Terek,
Nataliya Romanyuk
Affiliations
Orysia Makar
Department of Plant Physiology and Ecology, Ivan Franko National University of Lviv, 4 Hrushevsky Street, 79005 Lviv, Ukraine
Agnieszka Kuźniar
Department of Biology and Biotechnology of Microorganisms, The John Paul II Catholic University of Lublin, 1I Konstantynów Street, 20-708 Lublin, Poland
Ostap Patsula
Department of Plant Physiology and Ecology, Ivan Franko National University of Lviv, 4 Hrushevsky Street, 79005 Lviv, Ukraine
Yana Kavulych
Department of Plant Physiology and Ecology, Ivan Franko National University of Lviv, 4 Hrushevsky Street, 79005 Lviv, Ukraine
Volodymyr Kozlovskyy
Institute of Ecology of the Carpathians, NAS of Ukraine, 4 Kozelnytska Street, 79000 Lviv, Ukraine
Agnieszka Wolińska
Department of Biology and Biotechnology of Microorganisms, The John Paul II Catholic University of Lublin, 1I Konstantynów Street, 20-708 Lublin, Poland
Ewa Skórzyńska-Polit
Department of Plant Physiology and Biotechnology, The John Paul II Catholic University of Lublin, 1I Konstantynów Street, 20-708 Lublin, Poland
Olena Vatamaniuk
Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, 608 Bradfield Hall, Ithaca, NY 14853, USA
Olga Terek
Department of Plant Physiology and Ecology, Ivan Franko National University of Lviv, 4 Hrushevsky Street, 79005 Lviv, Ukraine
Nataliya Romanyuk
Department of Plant Physiology and Ecology, Ivan Franko National University of Lviv, 4 Hrushevsky Street, 79005 Lviv, Ukraine
Wheat grains are usually low in essential micronutrients. In resolving the problem of grain micronutritional quality, microbe-based technologies, including bacterial endophytes, seem to be promising. Thus, we aimed to (1) isolate and identify grain endophytic bacteria from selected spring wheat varieties (bread Oksamyt myronivs’kyi, Struna myronivs’ka, Dubravka, and emmer Holikovs’ka), which were all grown in field conditions with low bioavailability of microelements, and (2) evaluate the relationship between endophytes’ abilities to synthesize auxins and the concentration of Fe, Zn, and Cu in grains. The calculated biological accumulation factor (BAF) allowed for comparing the varietal ability to uptake and transport micronutrients to the grains. For the first time, bacterial endophytes were isolated from grains of emmer wheat T. turgidum subsp. dicoccum. Generally, the 12 different isolates identified in the four varieties belonged to the genera Staphylococcus, Pantoea, Sphingobium, Bacillus, Kosakonia, and Micrococcus (NCBI accession numbers: MT302194—MT302204, MT312840). All the studied strains were able to synthesize the indole-related compounds (IRCs; max: 16.57 µg∙mL−1) detected using the Salkowski reagent. The IRCs produced by the bacterial genera Pantoea spp. and Bacillus spp. isolated from high-yielding Oksamyt myronivs’kyi and Holikovs’ka grains may be considered as one of the determinants of the yield of wheat and its nutritional characteristics.