Identification of Degradation Mechanisms by Post-Mortem Analysis for High Power and High Energy Commercial Li-Ion Cells after Electric Vehicle Aging
Pierre Kuntz,
Olivier Raccurt,
Philippe Azaïs,
Karsten Richter,
Thomas Waldmann,
Margret Wohlfahrt-Mehrens,
Michel Bardet,
Anton Buzlukov,
Sylvie Genies
Affiliations
Pierre Kuntz
CEA—Commissariat à l’Energie Atomique et aux Energies Alternatives, LITEN—Laboratoire d’Innovation pour les Technologies des Energies Nouvelles et les Nanomatériaux, DEHT—Département de l’Electricité et de l’Hydrogène pour les Transports, Grenoble Alpes University, F-38000 Grenoble, France
Olivier Raccurt
CEA—Commissariat à l’Energie Atomique et aux Energies Alternatives, LITEN—Laboratoire d’Innovation pour les Technologies des Energies Nouvelles et les Nanomatériaux, DEHT—Département de l’Electricité et de l’Hydrogène pour les Transports, Grenoble Alpes University, F-38000 Grenoble, France
Philippe Azaïs
CEA—Commissariat à l’Energie Atomique et aux Energies Alternatives, LITEN—Laboratoire d’Innovation pour les Technologies des Energies Nouvelles et les Nanomatériaux, DEHT—Département de l’Electricité et de l’Hydrogène pour les Transports, Grenoble Alpes University, F-38000 Grenoble, France
Karsten Richter
ZSW—Zentrum für Sonnenenergie und Wasserstoff-Forschung Baden-Württemberg, D-89081 Ulm, Germany
Thomas Waldmann
ZSW—Zentrum für Sonnenenergie und Wasserstoff-Forschung Baden-Württemberg, D-89081 Ulm, Germany
Margret Wohlfahrt-Mehrens
ZSW—Zentrum für Sonnenenergie und Wasserstoff-Forschung Baden-Württemberg, D-89081 Ulm, Germany
Michel Bardet
CEA—Commissariat à l’Energie Atomique et aux Energies Alternatives, LRM—Laboratoire de Résonance Magnétique, MEM—Laboratoire Modélisation et Exploration des Matériaux, IRIG—Institut de Recherche Interdisciplinaire de Grenoble, Grenoble Alpes University, F-38000 Grenoble, France
Anton Buzlukov
CEA—Commissariat à l’Energie Atomique et aux Energies Alternatives, LRM—Laboratoire de Résonance Magnétique, MEM—Laboratoire Modélisation et Exploration des Matériaux, IRIG—Institut de Recherche Interdisciplinaire de Grenoble, Grenoble Alpes University, F-38000 Grenoble, France
Sylvie Genies
CEA—Commissariat à l’Energie Atomique et aux Energies Alternatives, LITEN—Laboratoire d’Innovation pour les Technologies des Energies Nouvelles et les Nanomatériaux, DEHT—Département de l’Electricité et de l’Hydrogène pour les Transports, Grenoble Alpes University, F-38000 Grenoble, France
Driven by the rise of the electric automotive industry, the Li-ion battery market is in strong expansion. This technology does not only fulfill the requirements of electric mobility, but is also found in most portable electric devices. Even though Li-ion batteries are known for their numerous advantages, they undergo serious performance degradation during their aging, and more particularly when used in specific conditions such as at low temperature or high charging current rates. Depending on the operational conditions, different aging mechanisms are favored and can induce physical and chemical modifications of the internal components, leading to performance decay. In this article, the identification of the degradation mechanisms was carried out thanks to an in-depth ante- and post mortem study on three high power and high energy commercial 18,650 cells. Li-ion cells were aged using a battery electric vehicle (BEV) aging profile at −20 °C, 0 °C, 25 °C, and 45 °C in accordance with the international standard IEC 62-660, and in calendar aging mode at 45 °C and SOC 100%. Internal components recovered from fresh and aged cells were investigated through different electrochemical (half-coin cell), chemical (EDX, GD-OES, NMR), and topological (SEM) characterization techniques. The influence of power and energy cells’ internal design and Si content in the negative electrode on cell aging has been highlighted vis-à-vis the capacity and power fade.