Toxicology Reports (Jun 2024)

Protective effect of hesperidin on malathion-induced ovarian toxicity in mice: The role of miRNAs, inflammation, and apoptosis

  • Seyedeh Fahimeh Talebi,
  • Alireza Kooshki,
  • Mahnaz Zarein,
  • Mohammad Seify,
  • Baharan Dolatshahi,
  • Hamed Shoorei,
  • Ramji Kumar Bhandari

Journal volume & issue
Vol. 12
pp. 469 – 476

Abstract

Read online

Malathion, a widely used organophosphate, is known for its relatively low toxicity and extensive application. However, it has been found to act as a female reproductive toxicant by causing oxidative stress, apoptosis, autophagy, and hormonal imbalances. Hesperidin, a flavonoid belonging to the flavanone class, exhibits various beneficial properties such as antioxidant and anti-inflammatory effects, which can potentially counteract harmful effects. The objective of this study was to examine how hesperidin and malathion impact the expression of miRNAs and genes linked to apoptosis and inflammation. Balb/c mice (n = 40) were divided into four groups: hesperidin (20 mg/kg), malathion (3 mg/kg), hesperidin+malathion, and control. After a 35-day intraperitoneal treatment, the mice were sacrificed. The left ovaries were used for analyzing the expression of miRNA-146a-5p, miRNA-129-3p, miRNA-96-5p, NF-κB, Bax, and Bcl-2 through RT-qPCR, as well as the levels of several cytokines using the ELISA method. The right ovaries were examined through histological and immunohistochemical techniques using H&E and NF-κB staining. Malathion exposure led to an increased Bax/Bcl-2 ratio, upregulated expression of Bax and NF-κB, elevated levels of IFN-γ, IL-2, and IL-6, enhanced expression of miRNA-146a-5p, decreased expression of miRNA-129-3p and miRNA-96-5p, and reduced levels of IL-4 and IL-10. Additionally, malathion-exposed ovaries exhibited structural abnormalities and disrupted architecture, accompanied by heightened NF-κB immunoreactivity. Conversely, treatment with hesperidin showed its capacity to counteract the detrimental consequences of malathion on the ovaries by alleviating or reversing these changes. In conclusion, hesperidin showed protective effects against malathion-induced ovarian toxicity by modulating cytokine production, apoptosis, inflammation, and miRNA expression.

Keywords