Drones (May 2025)

WRRT-DETR: Weather-Robust RT-DETR for Drone-View Object Detection in Adverse Weather

  • Bei Liu,
  • Jiangliang Jin,
  • Yihong Zhang,
  • Chen Sun

DOI
https://doi.org/10.3390/drones9050369
Journal volume & issue
Vol. 9, no. 5
p. 369

Abstract

Read online

With the rapid advancement of UAV technology, robust object detection under adverse weather conditions has become critical for enhancing UAVs’ environmental perception. However, object detection in such challenging conditions remains a significant hurdle, and standardized evaluation benchmarks are still lacking. To bridge this gap, we introduce the Adverse Weather Object Detection (AWOD) dataset—a large-scale dataset tailored for object detection in complex maritime environments. The AWOD dataset comprises 20,000 images captured under three representative adverse weather conditions: foggy, flare, and low-light. To address the challenges of scale variation and visual degradation introduced by harsh weather, we propose WRRT-DETR, a weather-robust object detection framework optimized for small objects. Within this framework, we design a gated single-head global–local attention backbone block (GLCE) to fuse local convolutional features with global attention, enhancing small object distinguishability. Additionally, a Frequency–Spatial Feature Augmentation Module (FSAE) is introduced to incorporate frequency-domain information for improved robustness, while an Attention-based Cross-Fusion Module (ACFM) facilitates the integration of multi-scale features. Experimental results demonstrate that WRRT-DETR outperforms SOTA methods on the AWOD dataset, exhibiting superior robustness and detection accuracy in complex weather conditions.

Keywords