PLoS ONE (Jan 2019)

Quantitative and qualitative evaluation of the impact of the G2 enhancer, bead sizes and lysing tubes on the bacterial community composition during DNA extraction from recalcitrant soil core samples based on community sequencing and qPCR.

  • Alex Gobbi,
  • Rui G Santini,
  • Elisa Filippi,
  • Lea Ellegaard-Jensen,
  • Carsten S Jacobsen,
  • Lars H Hansen

DOI
https://doi.org/10.1371/journal.pone.0200979
Journal volume & issue
Vol. 14, no. 4
p. e0200979

Abstract

Read online

Soil DNA extraction encounters numerous challenges that can affect both yield and purity of the recovered DNA. Clay particles lead to reduced DNA extraction efficiency, and PCR inhibitors from the soil matrix can negatively affect downstream analyses when applying DNA sequencing. Further, these effects impede molecular analysis of bacterial community compositions in lower biomass samples, as often observed in deeper soil layers. Many studies avoid these complications by using indirect DNA extraction with prior separation of the cells from the matrix, but such methods introduce other biases that influence the resulting microbial community composition. To address these issues, a direct DNA extraction method was applied in combination with the use of a commercial product, the G2 DNA/RNA Enhancer, marketed as being capable of improving the amount of DNA recovered after the lysis step. The results showed that application of G2 increased DNA yields from the studied clayey soils from layers from 1.00 to 2.20 m. Importantly, the use of G2 did not introduce bias, as it did not result in any significant differences in the biodiversity of the bacterial community measured in terms of alpha and beta diversity and taxonomical composition. Finally, this study considered a set of customised lysing tubes for evaluating possible influences on the DNA yield. Tubes customization included different bead sizes and amounts, along with lysing tubes coming from two suppliers. Results showed that the lysing tubes with mixed beads allowed greater DNA recovery compared to the use of either 0.1 or 1.4 mm beads, irrespective of the tube supplier. These outcomes may help to improve commercial products in DNA/RNA extraction kits, besides raising awareness about the optimal choice of additives, offering opportunities for acquiring a better understanding of topics such as vertical microbial characterisation and environmental DNA recovery in low biomass samples.