European Physical Journal C: Particles and Fields (Sep 2019)

Semileptonic decays of the scalar tetraquark $$Z_{bc;\overline{u}\overline{d}}^{0}$$ Zbc;u¯d¯0

  • H. Sundu,
  • S. S. Agaev,
  • K. Azizi

DOI
https://doi.org/10.1140/epjc/s10052-019-7268-4
Journal volume & issue
Vol. 79, no. 9
pp. 1 – 10

Abstract

Read online

Abstract We study semileptonic decays of the scalar tetraquark $$Z_{bc;\overline{u} \overline{d}}^{0}$$ Zbc;u¯d¯0 to final states $$T_{bs;\overline{u}\overline{d} }^{-}e^{+}\nu _{e}$$ Tbs;u¯d¯-e+νe and $$T_{bs;\overline{u}\overline{d}}^{-}\mu ^{+}\nu _{\mu }$$ Tbs;u¯d¯-μ+νμ , which run through the weak transitions $$c\rightarrow se^{+}\nu _{e}$$ c→se+νe and $$c\rightarrow s\mu ^{+}\nu _{\mu }$$ c→sμ+νμ , respectively. To this end, we calculate the mass and coupling of the final-state scalar tetraquark $$T_{bs;\overline{u}\overline{d} }^{-} $$ Tbs;u¯d¯- by means of the QCD two-point sum rule method: these spectroscopic parameters are used in our following investigations. In calculations we take into account the vacuum expectation values of the quark, gluon, and mixed operators up to dimension ten. We use also three-point sum rules to evaluate the weak form factors $$G_{i}(q^2)$$ Gi(q2) ($$i=1,~2$$ i=1,2 ) that describe these decays. The sum rule predictions for $$G_{i}(q^2)$$ Gi(q2) are employed to construct fit functions $$F_{i}(q^2)$$ Fi(q2) , which allow us to extrapolate the form factors to the whole region of kinematically accessible $$q^2$$ q2 . These functions are required to get partial widths of the semileptonic decays $$\Gamma \left( Z_{bc}^{0}\rightarrow Te^{+}\nu _{e}\right) $$ ΓZbc0→Te+νe and $$\Gamma \left( Z_{bc}^{0}\rightarrow T\mu ^{+}\nu _{\mu }\right) $$ ΓZbc0→Tμ+νμ by integrating corresponding differential rates. We analyze also the two-body nonleptonic decays $$Z_{bc;\overline{u}\overline{d}}^{0} \rightarrow T_{bs;\overline{u}\overline{d }}^{-}\pi ^{+}$$ Zbc;u¯d¯0→Tbs;u¯d¯-π+ and $$Z_{bc;\overline{u}\overline{d}}^{0} \rightarrow T_{bs;\overline{u }\overline{d}}^{-}K^{+}$$ Zbc;u¯d¯0→Tbs;u¯d¯-K+ , which are necessary to evaluate the full width of the $$Z_{bc;\overline{u}\overline{d}}^{0}$$ Zbc;u¯d¯0 . The obtained results for $$\Gamma _{\mathrm {full}}=(3.18\pm 0.39)\times 10^{-11}~{\mathrm {MeV}}$$ Γfull=(3.18±0.39)×10-11MeV and mean lifetime $$20.7_{-2.3}^{+2.9}~{\mathrm {ps}}$$ 20.7-2.3+2.9ps of the tetraquark $$Z_{bc;\overline{u} \overline{d}}^{0}$$ Zbc;u¯d¯0 can be used in experimental investigations of this exotic state.