Iranian Journal of Basic Medical Sciences (Jun 2009)

Ex vivo Expansion and Differentiation of Mesenchymal Stem Cells from Goat Bone Marrow

  • Mohamadreza Baghaban Eslaminejad,
  • Hamid Nazarian,
  • Fahimeh Falahi,
  • Leila Taghiyar,
  • Mohamad Taghi Daneshzadeh

Journal volume & issue
Vol. 12, no. 42

Abstract

Read online

Objective(s)Mesenchymal stem cells (MSCs) from large animals as goat which is genetically more closely related tohuman have rarely been gained attentions. The present study tried to isolate and characterize MSCs fromgoat bone marrow.Materials and MethodsFibroblastic cells appeared in goat marrow cell culture were expanded through several subcultures.Passaged-3 cells were then differentiated among the osteogenic, adipogenic and chondrogenic cell lineagesto determine their MSC nature. Differentiations were determined by RT-PCR analysis of related geneexpression. To identify the best culture conditions for propagation, passage-3 cells were plated either atvarying cell densities or different fetal bovine serum (FBS) concentrations for a week, at the end of whichthe cultures were statistically compared with respect to the cell proliferation. In this study, we alsodetermined goat MSC population doubling time (PDT) as the index of their in vitro expansion rate.ResultsPassage-3 fibroblastic cells tended to differentiate into skeletal cell lineages. This was evident in bothspecific staining as well as the specific gene expression profile. Moreover, there appeared to be moreexpansion when the cultures were initiated at 100 cells/cm2 in a medium supplemented with 15% FBS. Arelatively short PDT (24.94±2.67 hr) was a reflection of the goat MSC rapid rate of expansion.ConclusionTaken together, fibroblastic cells developed at goat marrow cell culture are able to differentiate into skeletalcell lineages. They undergo extensive proliferation when being plated at low cell density in 15% FBSconcentration.Keywords: Adipogenesis, Bovine serum, Cell seeding density, Chondrogenesis, Goat mesenchymal stemcells, Osteogenesis

Keywords