Heliyon (Apr 2023)
Application of xanthan gum as coagulant-aid for decolorization of synthetic Congo red wastewater
Abstract
In recent years, utilization of polysaccharides as natural coagulant and coagulant-aid has become a topic of interest, due to the nature of biopolymers that are renewable, biodegradable, and non-toxic. In this study, Congo red, as a model dye substance, was treated using polyaluminium chloride (PAC) as the main coagulant and xanthan gum as the coagulant aid. For this purpose, the effect of pH (3–9), xanthan gum dose (0.5–4 mg/L), and the initial concentration of Congo red dye (50–100 mg/L) to the dye removal and sludge volume were investigated. The outcome of this investigation indicates that the best pH for Congo red coagulation occurred at pH 3, due to the charge neutralization mechanism. The addition of coagulant-aid dose increases the %-removal and sludge volume until reaching the best coagulant-aid dose of 2 mg/L that results in a %-removal value of 93.81% and a sludge volume of 23.5 mL/L. Further addition of xanthan gum reduced the %-removal and sludge volume due to the inter-polymer force causing more difficult floc formation. The best initial concentration of dye occurred at a Congo red concentration of 50 mg/L, with a %-removal value of 93.81% with PAC (15 mg/L) and xanthan gum (2 mg/L) coagulants. This value is considerably higher than PAC and xanthan gum only which amounts to 81.16 and 7.18%, respectively. Based on these results, it is apparent that xanthan gum can positively contribute to dye coagulation while reducing the use of harmful inorganic coagulant.