Geochemistry, Geophysics, Geosystems (Apr 2024)

P–T Evolution of the Cyclades Blueschist Unit: Constraints on the Evolution of a Nascent Subduction System From Zr‐In‐Rutile (ZiR) and Quartz‐In‐Garnet (QuiG) Thermobarometry

  • Frank S. Spear,
  • Oliver M. Wolfe,
  • Jay B. Thomas,
  • Julia E. Hubbard,
  • Adrian E. Castro,
  • John T. Cheney

DOI
https://doi.org/10.1029/2023GC011121
Journal volume & issue
Vol. 25, no. 4
pp. n/a – n/a

Abstract

Read online

Abstract New results that employ Zr‐in‐rutile thermometry (ZiR) and quartz‐inclusion‐in‐garnet (QuiG) barometry constrain the P–T conditions of garnet formation in blueschists and eclogites from the island of Syros, Greece. QuiG barometry reveals that garnet from different regions across the island formed at pressures ranging from 1.1 to 1.8 GPa and ZiR thermometry on rutile inclusions in garnet constrains the minimum temperature of garnet formation to have been 475–550°C. Most importantly, there is no systematic difference in the conditions of garnet formation from different regions across the island and these results are nearly identical to those obtained from the islands of Sifnos and Ios, Greece. A model is proposed whereby the rocks from all three islands were initially metamorphosed along a relatively shallow geotherm of around 11°C/km to a depth of around 45 km and were then subjected to metamorphism along a geotherm of around 7–8°C/km, which could have been caused by either an increase in the dip of the subduction zone or an increase in the rate of subduction. Garnet formed along this steeper geotherm was accompanied by the release of significant H2O from the breakdown of chlorite over a duration of 1 Ma or less based on thermal and diffusion modeling. It is concluded that rocks from Syros, Sifnos and Ios all followed a similar, roughly counter‐clockwise prograde P–T path and that the present outcrop configuration is largely due to a complex exhumation history.

Keywords