Micromachines (Dec 2023)
A High-Precision Bandgap Reference with Chopper Stabilization and V-Curve Compensation Technique
Abstract
The MEMS sensor converts the physical signal of nature into an electrical signal. The output signal of the MEMS sensor is so weak and basically in the low-frequency band that the MEMS sensor interface circuit has a rigorous requirement for the noise/offset and temperature coefficient, especially in the bandgap reference block. However, the traditional amplifier has low-frequency noise and offset voltage, which will decrease the precision of the bandgap reference. In order to satisfy the need of the MEMS sensor interface circuit, a high-precision and low-noise bandgap reference is proposed in this paper. A novel operational amplifier with a chopper-stabilization technique is adopted to reduce offset and low-frequency noise. At the same time, the V-curve compensation circuit is used to realize the second-order curvature compensation. The circuit is implemented under the 0.18 μm standard of the CMOS process. The test result shows that the temperature coefficient of the bandgap is 2.31 ppm/°C in the range of −40–140 °C, while the output voltage noise is only 616 nV/sqrt(Hz)@1 Hz and the power-supply rejection ratio is 73 dB@10 kHz. The linear adjustment rate is 0.33 mV/V for supply voltages of 1.2–1.8 V at room temperature, the power consumption is only 107 μW at 1.8 V power supply voltage, and the chip active area is 0.21 × 0.28 mm2.
Keywords