A Hierarchically Structured Graphene/Ag Nanowires Paper as Thermal Interface Material
Le Lv,
Junfeng Ying,
Lu Chen,
Peidi Tao,
Liwen Sun,
Ke Yang,
Li Fu,
Jinhong Yu,
Qingwei Yan,
Wen Dai,
Nan Jiang,
Cheng-Te Lin
Affiliations
Le Lv
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
Junfeng Ying
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
Lu Chen
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
Peidi Tao
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
Liwen Sun
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
Ke Yang
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
Li Fu
Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
Jinhong Yu
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
Qingwei Yan
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
Wen Dai
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
Nan Jiang
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
Cheng-Te Lin
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
With the increase in heat power density in modern integrating electronics, thermal interface materials (TIM) that can efficiently fill the gaps between the heat source and heat sinks and enhance heat dissipation are urgently needed owing to their high thermal conductivity and excellent mechanical durability. Among all the emerged TIMs, graphene-based TIMs have attracted increasing attention because of the ultrahigh intrinsic thermal conductivity of graphene nanosheets. Despite extensive efforts, developing high-performance graphene-based papers with high through-plane thermal conductivity remains challenging despite their high in-plane thermal conductivity. In this study, a novel strategy for enhancing the through-plane thermal conductivity of graphene papers by in situ depositing AgNWs on graphene sheets (IGAP) was proposed, which could boost the through-plane thermal conductivity of the graphene paper up to 7.48 W m−1 K−1 under packaging conditions. In the TIM performance test under actual and simulated operating conditions, our IGAP exhibits strongly enhanced heat dissipation performance compared to the commercial thermal pads. We envision that our IGAP as a TIM has great potential for boosting the development of next-generation integrating circuit electronics.