Brain Stimulation (Jul 2024)
Electrophysiological sweet spot mapping in deep brain stimulation for Parkinson's disease patients
Abstract
Background: Subthalamic deep brain stimulation (STN-DBS) is a well-established therapy to treat Parkinson's disease (PD). However, the STN-DBS sub-target remains debated. Recently, a white matter tract termed the hyperdirect pathway (HDP), directly connecting the motor cortex to STN, has gained interest as HDP stimulation is hypothesized to drive DBS therapeutic effects. Previously, we have investigated EEG-based evoked potentials (EPs) to better understand the neuroanatomical origins of the DBS clinical effect. We found a 3-ms peak (P3) relating to clinical benefit, and a 10-ms peak (P10) suggesting nigral side effects. Here, we aimed to investigate the neuroanatomical origins of DBS EPs using probabilistic mapping. Methods: EPs were recorded using EEG whilst low-frequency stimulation was delivered at all DBS-contacts individually. Next, EPs were mapped onto the patients’ individual space and then transformed to MNI standard space. Using voxel-wise and fiber-wise probabilistic mapping, we determined hotspots/hottracts and coldspots/coldtracts for P3 and P10. Topography analysis was also performed to determine the spatial distribution of the DBS EPs. Results: In all 13 patients (18 hemispheres), voxel- and fiber-wise probabilistic mapping resulted in a P3-hotspot/hottract centered on the posterodorsomedial STN border indicative of HDP stimulation, while the P10-hotspot/hottract covered large parts of the substantia nigra. Conclusion: This study investigated EP-based probabilistic mapping in PD patients during STN-DBS, revealing a P3-hotspot/hottract in line with HDP stimulation and P10-hotspot/hottract related to nigral stimulation. Results from this study provide key evidence for an electrophysiological measure of HDP and nigral stimulation.