Discover Mental Health (Jan 2024)
Impacts of compounding drought and heatwave events on child mental health: insights from a spatial clustering analysis
Abstract
Abstract Background Concurrent heatwave and drought events may have larger health impacts than each event separately; however, no US-based studies have examined differential mental health impacts of compound drought and heatwave events in pediatric populations. Objective To examine the spatial patterns of mood disorders and suicide-related emergency department (ED) visits in children during heatwave, drought, and compound heatwave and drought events. We tested whether the occurrence of compound heatwave and drought events have a synergistic (multiplicative) effect on the risk of mental health related outcomes in children as compared to the additive effect of each individual climate hazard. Lastly, we identified household and community-level determinants of geographic variability of high psychiatric burden. Methods Daily counts of psychiatric ED visits in North Carolina from 2016 to 2019 (May to Sept) for pediatric populations were aggregated at the county scale. Bernoulli cluster analyses identified high-risk spatial clusters of psychiatric morbidity during heatwave, drought, or compound heatwave and drought periods. Multivariate adaptive regression models examined the individual importance of household and community-level determinants in predicting high-risk clustering of mood disorders or suicidality across the three climate threats. Results Results showed significant spatial clustering of suicide and mood disorder risks in children during heatwave, drought, and compound event periods. Periods of drought were associated with the highest likelihood of spatial clustering for suicide and mood disorders, where the risk of an ED visit was 4.48 and 6.32 times higher, respectively, compared to non-drought periods. Compounding events were associated with a threefold increase in both suicide and mood disorder-related ED visits. Community and household vulnerability factors that most contributed to spatial clustering varied across climate hazards, but consistent determinants included residential segregation, green space availability, low English proficiency, overcrowding, no broadband access, no vehicle access, housing vacancy, and availability of housing units. Conclusion Findings advance understanding on the locations of vulnerable pediatric populations who are disproportionately exposed to compounding climate stressors and identify community resilience factors to target in public health adaptation strategies.
Keywords