EPJ Applied Metamaterials (Jan 2019)

Enhancement of inductance along metallic mesh wires in three-dimensional quasi-isotropic metamaterials using high-ε dielectric particles for impedance-matching with free space

  • Yamaguchi Takuya,
  • Ishiyama Takumi,
  • Ueda Tetsuya,
  • Itoh Tatsuo

DOI
https://doi.org/10.1051/epjam/2019019
Journal volume & issue
Vol. 6
p. 21

Abstract

Read online

In this paper, we consider cube-shaped unit cells including high-ε dielectric cubes under magnetic dipole-like resonance placed at the center and metallic mesh wires for negative permittivity to construct three-dimensional quasi-isotropic metamaterials in the microwave region. Basically, such structures suffer from their low wave impedance due to inclusion of high-ε materials. To reduce effective permittivity of the composite structures, we propose to insert additional inductance into the metallic mesh. For the insertion of lumped inductors along the wires, dispersion diagram and the Bloch-impedance are numerically estimated, and converted to effective permittivity and permeability. The numerical simulation results clearly show almost 3-D isotropic propagation characteristics in a specific frequency region and enhancement of the Bloch-impedance close to free space in the left-handed region. The lumped inductors are replaced by meander-line strip patterns for practical configurations. The metallic patterned structures also achieve the enhanced Bloch impedance that is well-matched to free space.

Keywords