Molecular Pain (Nov 2010)
Molecular basis for the dosing time-dependency of anti-allodynic effects of gabapentin in a mouse model of neuropathic pain
Abstract
Abstract Background Neuropathic pain is characterized by hypersensitivity to innocuous stimuli (tactile allodynia) that is nearly always resistant to NSAIDs or even opioids. Gabapentin, a GABA analogue, was originally developed to treat epilepsy. Accumulating clinical evidence supports the effectiveness of this drug for diverse neuropathic pain. In this study, we showed that the anti-allodynic effect of gabapentin was changed by the circadian oscillation in the expression of its target molecule, the calcium channel α2δ-1 subunit. Results Mice were underwent partial sciatic nerve ligation (PSL) to create a model of neuropathic pain. The paw withdrawal threshold (PWT) in PSL mice significantly decreased and fluctuated with a period length about 24 h. The PWT in PSL mice was dose-dependently increased by intraperitoneal injection of gabapentin, but the anti-allodynic effects varied according to its dosing time. The protein levels of α2δ-1 subunit were up-regulated in the DRG of PSL mice, but the protein levels oscillated in a circadian time-dependent manner. The time-dependent oscillation of α2δ-1 subunit protein correlated with fluctuations in the maximal binding capacity of gabapentin. The anti-allodynic effect of gabapentin was attenuated at the times of the day when α2δ-1 subunit protein was abundant. Conclusions These findings suggest that the dosing time-dependent difference in the anti-allodynic effects of gabapentin is attributable to the circadian oscillation of α2δ-1 subunit expression in the DRG and indicate that the optimizing its dosing schedule helps to achieve rational pharmacotherapy for neuropathic pain.