A Novel Trichothecene Toxin Phenotype Associated with Horizontal Gene Transfer and a Change in Gene Function in <i>Fusarium</i>
Robert H. Proctor,
Guixia Hao,
Hye-Seon Kim,
Briana K. Whitaker,
Imane Laraba,
Martha M. Vaughan,
Susan P. McCormick
Affiliations
Robert H. Proctor
Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, 1815 N University St., Peoria, IL 61604, USA
Guixia Hao
Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, 1815 N University St., Peoria, IL 61604, USA
Hye-Seon Kim
Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, 1815 N University St., Peoria, IL 61604, USA
Briana K. Whitaker
Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, 1815 N University St., Peoria, IL 61604, USA
Imane Laraba
Oak Ridge Institute for Science and Education, Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, IL 61604, USA
Martha M. Vaughan
Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, 1815 N University St., Peoria, IL 61604, USA
Susan P. McCormick
Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, 1815 N University St., Peoria, IL 61604, USA
Fusarium trichothecenes are among the mycotoxins of most concern to food and feed safety. Production of these mycotoxins and presence of the trichothecene biosynthetic gene (TRI) cluster have been confirmed in only two multispecies lineages of Fusarium: the Fusarium incarnatum-equiseti (Incarnatum) and F. sambucinum (Sambucinum) species complexes. Here, we identified and characterized a TRI cluster in a species that has not been formally described and is represented by Fusarium sp. NRRL 66739. This fungus is reported to be a member of a third Fusarium lineage: the F. buharicum species complex. Cultures of NRRL 66739 accumulated only two trichothecenes, 7-hydroxyisotrichodermin and 7-hydroxyisotrichodermol. Although these are not novel trichothecenes, the production profile of NRRL 66739 is novel, because in previous reports 7-hydroxyisotrichodermin and 7-hydroxyisotrichodermol were components of mixtures of 6–8 trichothecenes produced by several Fusarium species in Sambucinum. Heterologous expression analysis indicated that the TRI13 gene in NRRL 66739 confers trichothecene 7-hydroxylation. This contrasts the trichothecene 4-hydroxylation function of TRI13 in other Fusarium species. Phylogenetic analyses suggest that NRRL 66739 acquired the TRI cluster via horizontal gene transfer from a close relative of Incarnatum and Sambucinum. These findings provide insights into evolutionary processes that have shaped the distribution of trichothecene production among Fusarium species and the structural diversity of the toxins.