Journal of Advanced Research (Jul 2020)

Whole-cell fungal-mediated structural transformation of anabolic drug metenolone acetate into potent anti-inflammatory metabolites

  • Mahwish Siddiqui,
  • Atia-tul-Wahab,
  • Almas Jabeen,
  • Yan Wang,
  • Wei Wang,
  • Atta-ur-Rahman,
  • M. Iqbal Choudhary

Journal volume & issue
Vol. 24
pp. 69 – 78

Abstract

Read online

Seven new derivatives, 6α-hydroxy-1-methyl-3-oxo-5α-androst-1-en-17-yl acetate (2), 6α,17β-dihydroxy-1-methyl-3-oxo-5α-androst-1-en (3), 7β-hydroxy-1-methyl-3-oxo-5α-androst-1-en-17-yl acetate (4), 15β,20-dihydroxy-1-methyl-3-oxo-5α-androst-1-en-17-yl acetate (5), 15β-hydroxy-1-methyl-3-oxo-5α-androst-1-en-17-yl acetate (6), 12β,17β-dihydroxy-1-methyl-3-oxoandrosta-1,4-dien (11), and 7β,15β,17β-trihydroxy-1-methyl-3-oxo-5α-androst-1-en (14), along with six known metabolites, 17β-hydroxy-1-methyl-3-oxoandrosta-1,4-dien (7), 17β-hydroxy-1-methyl-3-oxo-5α-androst-1-en (8), 17β-hydroxy-1-methyl-3-oxo-5β-androst-1-en (9), 1-methyl-5β-androst-1-en-3,17-dione (10), 1-methyl-3-oxoandrosta-1,4-dien-3,17-dione (12), and 17β-hydroxy-1α-methyl-5α-androstan-3-one (13) of metenolone acetate (1), were synthesized through whole-cell biocatalysis with Rhizopus stolonifer, Aspergillus alliaceous, Fusarium lini, and Cunninghamella elegans. Atamestane (12), an aromatase inhibitor, was synthesized for the first time via F. lini-mediated transformation of 1 as the major product. Hydroxylation, dehydrogenation, and reduction were occurred during biocatalysis. Study indicated that F. lini was able to catalyze dehydrogenation reactions selectively. Structures of compounds 1–14 were determined through NMR, HRFAB-MS, and IR spectroscopic data. Compounds 1–14 were identified as non-cytotoxic against BJ human fibroblast cell line (ATCC CRL-2522). Metabolite 5 (81.0 ± 2.5%) showed a potent activity against TNF-α production, as compared to the substrate 1 (62.5 ± 4.4%). Metabolites 2 (73.4 ± 0.6%), 8 (69.7 ± 1.4%), 10 (73.2 ± 0.3%), 11 (60.1 ± 3.3%), and 12 (71.0 ± 7.2%), also showed a good inhibition of TNF-α production. Compounds 3 (IC50 = 4.4 ± 0.01 µg/mL), and 5 (IC50 = 10.2 ± 0.01 µg/mL) showed a significant activity against T-cell proliferation. Identification of selective inhibitors of TNF-α production, and T-cell proliferation is a step forward towards the development of anti-inflammatory drugs.

Keywords