Cancer Cell International (Nov 2024)
DAPK enhances DDX20 protein stability via suppression of TRIM25-mediated ubiquitination-based DDX20 degradation
Abstract
Abstract We have previously found that the DAPK-DDX20 signaling axis exerts an anti-cancer activity in hepatocellular carcinoma (HCC) by inhibiting the GTPase activity of CDC42, thereby reducing the invasive and migratory capabilities of cancer cells without affecting cell proliferation. DDX20 serves as an intermediate protein regulated by DAPK in the control of CDC42. Specifically, DAPK enhances DDX20 protein levels by suppressing DDX20 degradation. However, the mechanism underlying DAPK regulation of DDX20 remains unclear. In the current study, we discovered that DDX20 is degraded through the ubiquitin–proteasome pathway and identified TRIM25 as the E3 ubiquitin ligase of DDX20. TRIM25 mediates the proteasomal degradation of DDX20 by binding to, and ubiquitinating the 1-244 amino acid region of DDX20. Moreover, DAPK interacts with this 1-244 segment of DDX20, inhibiting its ubiquitination and enhancing its stability, despite the lack of direct physical interaction between DAPK and the 1-244 region of DDX20. Remarkably, DAPK, TRIM25, and DDX20 form a ternary protein complex in cells, and knockdown of TRIM25 leads to a reduction in the cellular levels of the binary DAPK-DDX20 complex, suggesting that TRIM25 acts as an important intermediate protein linking DAPK and DDX20. TRIM25 functions as an oncogene in liver cancer, as shRNA-mediated silencing of TRIM25 inhibits cell migration and invasion. Therefore, these novel findings of the interaction among these three proteins not only enhances our knowledge of the downstream molecular network of DAPK and its possible role in the development of HCC, but also provides potential druggable targets for the future development of novel anticancer drug therapeutics.
Keywords