Open Chemistry (Apr 2020)
Preparation of magnetite-silica–cetyltrimethylammonium for phenol removal based on adsolubilization
Abstract
In this study, we successfully coated cetyltrimethylammonium–silica on magnetite. The material produced is used to degrade phenol waste in the waters. The effect of the addition of cetyltrimethylammonium bromide (CTAB) on the ability of phenol adsorption was assessed through changes in CTAB concentration of 1, 5, and 10 mM. The results of Fourier-transform infrared spectroscopy explain that CTAB has electrostatic interactions with the silica surface, which is induced by opposite-loaded patches on the opposite surface of silica oxide. The results of the vibrating sample magnetometer show that the magnetite that has been coated by silica–CTA has magnetic properties that are weaker than the initial magnetite, which indicates that the silica–CTA layer has blocked the magnetite. Based on the measurement of the gas sorption analyzer, the largest pore size is in the micro-mesh region, which is between 2 and 6 nm. All magnetite-silica–cetyltrimethylammonium (MS–CTA) showed good adsorption ability of phenol and correlated with the amount of loaded CTAB and admicelle density of the adsorbent. The amount of phenol adsorbed increases proportionately with the increasing density of CTAB admicelles. The maximum phenol adsorption capacity (0.93 mg g−1 adsorbent) is achieved by MS–CTA prepared at a CTAB concentration of 10 mM.
Keywords