BMC Nephrology (Feb 2021)

Using circulating O-sulfotyrosine in the differential diagnosis of acute kidney injury and chronic kidney disease

  • Shuai Chen,
  • Yong-Hua Liu,
  • Dao-Peng Dai,
  • Zheng-Bin Zhu,
  • Yang Dai,
  • Zhi-Ming Wu,
  • Li-Ping Zhang,
  • Zhi-Feng Duan,
  • Lin Lu,
  • Feng-Hua Ding,
  • Jin-Zhou Zhu,
  • Rui-Yan Zhang

DOI
https://doi.org/10.1186/s12882-021-02268-3
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Sulfation of tyrosine, yielding O-sulfotyrosine, is a common but fixed post-translational modification in eukaryotes. Patients with increased circulating O-sulfotyrosine levels experience a faster decline in renal function with progression to end-stage renal disease (ESRD). In the present study, we measured serum O-sulfotyrosine levels in individuals with chronic kidney disease (CKD) and acute kidney injury (AKI) to explore its ability to differentiate AKI from CKD. Methods A total of 135 patients (20 with AKI and 115 with CKD) were recruited prospectively for liquid chromatography-mass spectrometry assessment of circulating O-sulfotyrosine. We also studied C57BL/6 mice with CKD after 5/6 nephrectomy (Nx). Blood samples were drawn from the tail vein on Day 1, 3, 5, 7, 14, 30, 60, and 90 after CKD. Serum separation and characterization of creatinine, blood urea nitrogen (BUN), and O-sulfotyrosine was performed. Thus, the time-concentration curves of the O-sulfotyrosine level demonstrate the variation of kidney dysfunction. Results The serum levels of O-sulfotyrosine were markedly increased in patients with CKD compared with AKI. Median O-sulfotyrosine levels in CKD patients versus AKI, respectively, were as follows:243.61 ng/mL(interquartile range [IQR] = 171.90–553.86) versus 126.55 ng/mL (IQR = 48.19–185.03, P = 0.004). In patients with CKD, O-sulfotyrosine levels were positively correlated with creatinine, BUN, and Cystatin C (r = 0.63, P < 0.001; r = 0.49, P < 0.001; r = 0.61, P < 0.001, respectively) by the multivariate linear regression analysis (β = 0.71, P < 0.001; β = 0.40, P = 0.002; β = 0.73, P < 0.001, respectively). However, this association was not statistically significant in patients with AKI (r = − 0.17, P = 0.472; r = 0.11, P = 0.655; r = 0.09, P = 0.716, respectively). The receiver operating characteristic (ROC) analysis illustrated that the area under the curve was 0.80 (95% confidence interval [CI] 0.71–0.89; P < 0.001) and the optimal cut-off value of serum O-sulfotyrosine suggesting AKI was < 147.40 ng/mL with a sensitivity and specificity of 80.90 and 70.00% respectively. In animal experiments, serum levels of O-sulfotyrosine in mice were elevated on Day 7 after 5/6 nephrectomy (14.89 ± 1.05 vs. 8.88 ± 2.62 ng/mL, P < 0.001) until Day 90 (32.65 ± 5.59 vs. 8.88 ± 2.62 ng/mL, P < 0.001). Conclusion Serum O-sulfotyrosine levels were observed correlated with degrading renal function and in CKD patients substantially higher than those in AKI patients. Thus serum O-sulfotyrosine facilitated the differential diagnosis of AKI from CKD.

Keywords