Journal of Lipid Research (Mar 2014)

Intestinal CYP3A4 protects against lithocholic acid-induced hepatotoxicity in intestine-specific VDR-deficient mice[S]

  • Jie Cheng,
  • Zhong-Ze Fang,
  • Jung-Hwan Kim,
  • Kristopher W. Krausz,
  • Naoki Tanaka,
  • JohnY.L. Chiang,
  • Frank J. Gonzalez

Journal volume & issue
Vol. 55, no. 3
pp. 455 – 465

Abstract

Read online

Vitamin D receptor (VDR) mediates vitamin D signaling involved in bone metabolism, cellular growth and differentiation, cardiovascular function, and bile acid regulation. Mice with an intestine-specific disruption of VDR (VdrΔIEpC) have abnormal body size, colon structure, and imbalance of bile acid metabolism. Lithocholic acid (LCA), a secondary bile acid that activates VDR, is among the most toxic of the bile acids that when overaccumulated in the liver causes hepatotoxicity. Because cytochrome P450 3A4 (CYP3A4) is a target gene of VDR-involved bile acid metabolism, the role of CYP3A4 in VDR biology and bile acid metabolism was investigated. The CYP3A4 gene was inserted into VdrΔIEpC mice to produce the VdrΔIEpC/3A4 line. LCA was administered to control, transgenic-CYP3A4, VdrΔIEpC, and VdrΔIEpC/3A4 mice, and hepatic toxicity and bile acid levels in the liver, intestine, bile, and urine were measured. VDR deficiency in the intestine of the VdrΔIEpC mice exacerbates LCA-induced hepatotoxicity manifested by increased necrosis and inflammation, due in part to over-accumulation of hepatic bile acids including taurocholic acid and taurodeoxycholic acid. Intestinal expression of CYP3A4 in the VdrΔIEpC/3A4 mouse line reduces LCA-induced hepatotoxicity through elevation of LCA metabolism and detoxification, and suppression of bile acid transporter expression in the small intestine. This study reveals that intestinal CYP3A4 protects against LCA hepatotoxicity.

Keywords